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Direct numerical simulation (DNS) of fully developed turbulent flow in elliptical
ducts is performed. The mean cross-stream secondary flows exhibited by two counter-
rotating vortices which are symmetrical about the major ellipse’s axis are examined.
The mean flow characteristics and turbulence statistics are obtained. The variation of
the statistical quantities such as the Reynolds stresses and turbulence intensities along
the minor axis of the elliptical cross-section are found to be similar to plane channel
data. The turbulent statistics along the major axis are found to be inhibited by the
secondary flow transferring high-momentum fluid from the duct’s centre towards the
wall. The instantaneous velocity fields in the near-wall region reveal structures similar
to the ‘streaks’ except in the vicinity of the major axis endpoints where significant
reduction of the turbulent activity due to the wall transverse curvature effect is found.

1. Introduction
During the last decade, direct numerical simulation (DNS) has been recognized as

a powerful and reliable tool for studying turbulent flows. Numerous studies showed
that results obtained by DNS are in excellent agreement with experimental findings,
if they are reliable (see Moin & Mahesh 1998). DNS-based studies are advantageous
to experimental methods in that a practically unrestrained, far more detailed study
of the flow-field structure can be achieved. Another, perhaps even more important
advantage is that DNS allows exposure of new important physical mechanisms of
turbulence production and self-sustainability. However, one major difficulty that arises
with a numerical investigation of turbulent flow is the presence of a vast continuous
range of excited scales of motion which must be correctly resolved by numerical
simulation. DNS of turbulent wall-bounded flows requires order Re21/8 storage and
order Re7/2 work to resolve dynamically significant velocity fluctuations at large
Reynolds numbers. Even if computer power continues to increase at its present high
rate, application of DNS to realistic flows of engineering importance will continue to
be restricted by relatively moderate Reynolds numbers. Another principal restriction
is that most DNS-based works have focused on simple-geometry flows. For wall-
bounded turbulent flows, the majority of successful DNS-based simulations dealt with
simple geometry cases such as a plane channel, a flat-plate boundary layer, a pipe and
a straight square duct (see Kim, Moin, & Moser 1987; Spalart 1988; Gavrilakis 1992;
Huser & Biringen 1993; Madabhushi & Vanka 1993; Eggels et al. 1994; Nikitin 1994,
1996, 1997). Discretization of Navier–Stokes equations in the vicinity of complex
geometry boundaries is the most difficult problem for numerical simulating flow
problems. The use of boundary-fitted, structured or non-structured grids solves this
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problem, but implementing such grids leads to low-order numerical algorithms which
involve high-cost computer time, are memory consuming, and cannot be efficiently
used for DNS.

An alternative approach is based on the immersed-boundary (IB) method as
introduced by Peskin (1972). IB methods were originally used to reduce the simulation
of complex geometry flows to that defined on simple (rectangular) domains. This can
be illustrated if we consider a flow of an incompressible fluid around an obstacle Ω

(S is its boundary) placed onto a rectangular domain Π . The flow is governed by the
Navier–Stokes and incompressibility equations with the no-slip boundary condition
on S. The fundamental idea behind IB methods is to describe the flow problem,
defined in Π − Ω , by solving the governing equations inside an entire rectangular
Π without an obstacle using simple rectangular (Cartesian or cylindrical) meshes,
which, generally speaking, do not coincide with the boundary S. To impose the no-
slip condition on an obstacle surface S (which becomes an internal surface for the
rectangular domain wherein the problem is formulated), a source term f (an artificial
body force) is added to the Navier–Stokes equations. The purpose of the forcing
term is to impose the no-slip boundary condition on the xS-points which define the
immersed boundary S.

IB-based approaches differ by the methods used to introduce an artificial force into
the governing equations. References of different immersed-boundary methods can be
found in Balaras (2004) and Moin (2002). For example, a ‘direct forcing’ approach
was suggested by Mohd-Yusof (1997) for numerical schemes using spectral methods.
Fadlun et al. (2000) and Kim, Kim & Choi (2001) developed the idea of ‘direct
forcing’ for implementing finite-volume methods on a staggered grid. Kim et al. (2001)
contributed two basic approaches for introducing direct forcing when using immersed-
boundary methods. One was a new numerically stable interpolation procedure for
evaluating the forcing term, and the other approach introduced a mass source/sink
to enhance the solution’s accuracy.

The main advantages of IB methods are that they are based on relatively simple
numerical codes and highly effective algorithms, both of which result in considerable
reduction of required computing resources. The main disadvantage, however, in using
simple computational meshes is the difficulty in resolving local regions with steep
(sharp, abrupt) variation of flow characteristics. These are especially pronounced
for high-Reynolds number flows. In addition, in order to impose the boundary
conditions, numerical algorithms require that the node velocity values should be
interpolated onto the boundary points because the boundary S does not coincide with
the gridpoints of a rectangular mesh. Finally, because of the time-stepping algorithms
used in ‘direct forcing’ IB methods, the no-slip boundary condition is imposed with
O(�t2) accuracy. Therefore, implementation of IB methods to simulate turbulent
flows requires careful monitoring to avoid possible contamination of numerical results
arising from inaccurate boundary conditions.

Our present study is based on the direct forcing approach suggested by Kim et al.
(2001). In this paper, we applied the IB method for DNS of fully developed turbulent
flow in ducts with an elliptical cross-section. (The suggested numerical algorithm can
be used for simulating flows in ducts of arbitrary cross-section.) An elliptical pipe is a
slight modification of a classic pipe and the simplest type of non-circular duct. To the
best of our knowledge, only Cain & Duffy (1971) have presented experimental data
on turbulent flow in elliptical duct. As in other non-circular ducts, the flow is peculiar
by developing secondary mean motions in the plane perpendicular to the streamwise
flow direction known as secondary flows of the Prandtl second kind, and created



Direct numerical simulation of turbulent flow in elliptical ducts 143

by generating the mean streamwise vorticity due to the anisotropy of the Reynolds
stresses. Such motions are an intrinsic feature of turbulent flow in non-circular ducts
and do not take place in a plane channel or a circular pipe. Despite the fact that the
secondary velocity in non-circular ducts is only 1–3 % of the streamwise bulk velocity,
secondary motions play a significant role by cross-stream transferring momentum,
heat and mass (see Demuren & Rodi 1984). The development of turbulent closure
models that can reliably predict turbulence-driven secondary flows in non-circular
ducts is currently unfeasible owing to a lack of detailed experimental data. Reported
DNS-based studies only relate to turbulent flow through straight ducts of square
cross-section (see Gavrilakis 1992; Huser & Biringen 1993; Nikitin 1997). To the best
of our knowledge, ours is the first study to perform a DNS of turbulent flow in
elliptical ducts and to report the results of DNS calculations.

2. Numerical method: description and validation
We consider an incompressible fluid forced by pressure difference to move through

an elliptical duct

G = {(x, y, z): x2/a2 + y2/b2 < 1, 0 � z � Lz}. (2.1)

Fully developed flow in a duct is governed by the Navier–Stokes equations

∂u
∂t

= −(u∇)u + ν∇2u − ∇p + k
�p

ρLz

, (2.2)

subjected to the incompressibility constraint

∇ · u = 0, (2.3)

where u = (ux, uy, uz) is the velocity field, p is the kinematic pressure, ν is the kinematic
viscosity, and k is the unit vector in the z-direction. We imply the no-slip boundary
condition at the wall and periodic boundary conditions in the streamwise z-direction.
In (2.2), we split the pressure gradient into two terms, where, owing to the implied
periodicity, the first (∇p) does not contribute to the overall pressure drop. In order
to maintain a constant flow rate Q0, the pressure drop is determined by the value of
�p(t), which is obtained at each time instant from the constraint∫ ∫

Ω

uz(x, y, z, t) dx dy = Q0 = const. (2.4)

In (2.4), Ω denotes the duct’s cross-section, and the integral does not depend on z

owing to incompressibility.
Numerical solution to the system of equations (2.2)–(2.3) was obtained by using

the IB approach suggested by Kim et al. (2001). The only difference is that instead of
using the time-advancement scheme of Rai & Moin (1991) we employed the algorithm
suggested in Nikitin (1996). Both schemes exploit third-order accurate explicit Runge–
Kutta methods for convective terms and second-order accurate implicit methods for
viscous terms; thus, overall accuracy of both schemes is of second order in time.
The advantage of the scheme we adapted is that it includes a built-in local accuracy
estimation and time-step control algorithm. A variable time step is convenient, espe-
cially for simulations of flows with varying-in-time characteristic time scale, for
example, for simulating a laminar–turbulent transition with randomly imposed initial
perturbations. This process is usually accompanied by abrupt changes in the velocity
field, which requires considerable reductions in the time-step size.



144 N. Nikitin and A. Yakhot

Following the IB approach, we solve the governing equations in a three-dimensional
computational rectangular domain Π

Π = {(x, y, z): |x| � A, |y| � B, 0 � z � Lz, A > a, B > b}, (2.5)

which includes the elliptical (generally speaking, arbitrary) cross-section duct G, (2.1).
We used the second-order accurate finite-difference discretization on a rectangular
mesh incorporating the concept of staggered grids introduced by Harlow & Welsh
(1965). Derivation of the finite-difference equations is similarly done as in Schumann
(1975), but we also take into account the grid’s non-uniformity in the x- and y-
directions. The Poisson equation for the pressure is solved by fast direct methods
using the fast Fourier transform in the z-direction and the cyclic reduction method
in the (x, y)-plane (see Swarztrauber 1974).

The non-uniform grid in the cross-sectional plane was constructed using mapping
of the uniform grid in computational space −1 � ξ, η � 1 by x = Af (ξ ), y = Bf (η).
Here, the mapping function f (ζ ) = ζ [1+(1− ζ 2)(7−3ζ 2)/16] provides the gridpoints
clustering near the boundaries |x| = A, |y| = B . In the axial z-direction the gridpoints
were equally spaced.

The numerical procedure can be described as follows. Starting with some initial
three-dimensional velocity field, the governing equations are integrated in time until
a statistically steady state is reached. Then the mean flow and turbulence statistical
quantities are obtained by further time-advancing and averaging both in time and
along the homogeneous z-direction†. A result of this averaging procedure is that the
mean fields depend on x and y.

In this paper, the presented results of the calculated velocities and turbulence
intensities are normalized by the bulk velocity, Ub. The ellipse’s major semi-axis, a, is
the characteristic length; lτ = ν/uτ and uτ = (τw/ρ)1/2 are the wall length and shear-
velocity units, respectively‡. For the fully developed flow, the mean wall shear stress,
τw , is balanced by the mean pressure drop, �p, and defined from

τw = �p
Dh

4Lz

, Dh =
4Ω

Pw

, (2.6)

where Dh is the hydraulic diameter, and Ω and Pw are the duct (ellipse) cross-section
area and perimeter length, respectively.

2.1. Circular pipe: computational domain, spatial and temporal resolution

A cylindrical coordinate system is a natural choice for performing a simulation of
a circular pipe flow. However, the application of the cylindrical coordinates causes
some difficulty in implementing the numerical scheme. Besides the singularity at the
centreline, the curvature of the cylindrical coordinates leads to small grid spacing
close to the centreline, which may result in a strong restriction on the time step.
Such peculiarities that arise when employing a cylindrical coordinate system for
DNS of turbulent flows have been addressed in Eggels et al. (1994), Fukagata &
Kasagi (2002), Morinishi, Vasilyev & Ogi (2004) and Verzicco & Orlandi (1996).
The IB method used in this study does not encounter these difficulties. To validate
the method, DNS of turbulent flow through a circular pipe was carried out. This

† In this paper, 〈〉 denotes averaging in time and over the streamwise direction. For convenience,
an upper case letter Ξ is used for Ξ ≡ 〈ξ〉. A quantity ξ ′ means an instantaneous fluctuation of ξ ,
i.e. ξ = 〈ξ〉 + ξ ′.

‡ For ξ+, the subscript + denotes that a quantity ξ is normalized by the wall units.
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Case CP1 CP2 CP3

Rem = UbD/ν 4000 4000 6000
Nx × Ny × Nz 64 × 64 × 64 120 × 120 × 128 120 × 120 × 128
Reτ = uτa/ν 142 141 204

Lz/a 6.0 6.0 6.0

L+
z 851 846 1227

h+
x,y,min 2.3 1.2 1.7

h+
x,y,max 6.6 3.4 5.0

h+
x 4.6 2.4 3.5

h+
y 4.6 2.4 3.5

h+
z 13.3 6.6 9.6

�s+ 6.5 3.4 4.9

�+ 6.5 3.4 4.9

d+
1,min 0.0 0.0 0.0

d+
1,max 2.3 1.5 2.2

d+
1,mean 1.2 0.7 1.0

�t+ 0.5 0.25 0.35

CFL 0.7 0.7 0.7

Tavuτ /a 570 30 40

Cf 0.0101 0.00994 0.00929

�(Cf ) 1.2 % −0.03 % 3.4 %

Uc/Ub 1.32 1.33 1.30

U+
c 18.66 18.81 19.10

Table 1. Circular pipe runs.

flow has been thoroughly studied and has been documented both experimentally
and numerically. Comprehensive analysis of the DNS-based results are in excellent
agreement with experimental findings (see Eggels et al. 1994; Nikitin 1994, 1996). This
means that a circular pipe case can be used as a benchmark test for the immersed-
boundary method. We have performed three test simulations of turbulent flow in
a circular pipe (a = b, D =2a). The mean flow properties and computational grid
data are summarized in table 1. The computational domain cross-section, (2.5), is
a square, A= B; the length of its side has been specified to exceed the diameter of
the pipe by 4 grid cells. The length of the computational domain, Lz, is of 6 pipe
radii, which is less than that used in Eggels et al. (1994) and Kim et al. (1987) (10
and 4π, respectively). As has been shown in Nikitin (1994, 1996), Lz ≈ 6a is sufficient
for satisfactorily predicting the main turbulence statistics properties. In table 1, the
smallest and largest gridspacings in the x- and y-directions are denoted by hx,y,min

and hx,y,max, respectively (because of the symmetry, the gridpoints were similarly
distributed in the x- and y-directions). The mean gridspacings of the cells located
inside the pipe are hx and hy; the gridspacing in the z-direction, hz, is uniform.

For DNS of wall-bounded flows, the spatial discretization at the given Reynolds
number should be chosen so that all dynamically relevant length scales in the near-
wall region are properly resolved. It is convenient to use the viscous length scale
ν/uτ as the measure of the smallest turbulence scale. The distance to the wall of the
first gridpoint (d1), where the axial velocity is computed, should be of the order of
ν/uτ or less. From table 1, only the case CP2 somewhat satisfies this requirement.
We note that the pipe’s boundary intersects the computational cells in an irregular
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manner. Moreover, most of the grid points nearest to the boundary surface, where the
axial velocity is calculated, are located at a distance less than the near-wall cell size.
The spanwise (circumferential) resolution in the near-wall region can be estimated as

�s ≈
√

h2
x + h2

y . For all cases given in table 1, the resolution was sufficient to resolve

the near-wall streaks with the mean spanwise spacing of λ+ � 80–120. It is believed
that the mean grid width �+ = (h+

x h+
y h+

z )1/3 satisfies the constraint �+ � πη+, where
η+ is the Kolmogorov length scale (see Eggels et al. 1994). With η+ ≈ 1.6, the criterion
�+ � 5.0 is satisfied for cases CP2 and CP3.

The time steps �t in table 1 correspond to a fully developed regime. The initial
velocity field with imposed randomly chosen perturbations undergoes transition to
turbulence through non-physical states. This process might be accompanied by abrupt
changes of the velocity field, which requires reducing the time step. This was done using
an effective time-step control procedure developed in Nikitin (1996). As was noted
in § 1 the ‘direct forcing’ IB method developed by Kim et al. (2001) and employed
in this paper introduces an error of O(�t2) in the no-slip boundary condition. To
estimate this error, the maximum of the velocity components at the boundary points
have to be monitored in time. The criterion for the time step �t in our circular pipe
test calculations (as well as in simulations of elliptical duct flows considered below)
was to maintain the maximum error in the no-slip condition at a level of 2–3×10−3Ub.
It should be emphasized that the error L2-norm is about one order of magnitude
less than the maximum value. Besides the requirement to minimize the error in the
no-slip condition, the resolution in time should be sufficiently small to resolve all
scales of motion. For the so-called ‘minimal flow unit’ of Jiménez & Moin (1991) –
the computational domain with minimum sizes in the streamwise and spanwise
directions to sustain channel flow turbulence – Choi & Moin (1994) demonstrated that
the computational time step should be perceptibly less than the Kolmogorov time
scale in the viscous sublayer, τ+ ≡ (u4

τ /εν)1/2 � 2.4, where ε is the dissipation rate.
Their computations indicated that the turbulence statistics obtained with the non-
dimensional time step �t+ = 0.4 are sufficiently close to those predicted with �t+ =
0.2. DNS of turbulent flow in a full channel showed that the estimation �t+ � 0.2 is
apparently too conservative. On the other hand, simulations with �t+ ∼ 1.0 predicted
very good turbulence statistics (see Nikitin 1994, 1996, 1997). For DNS of a circular
pipe flow, Eggels et al. (1994) used �t+ =0.072, which is much smaller than the
Kolmogorov time scale. Akselvoll & Moin (1996) used a domain decomposition
method for temporal integration of the Navier–Stokes equations written in cylindrical
coordinates. Their method yielded the maximum time step �t+ = 0.18, which is a
factor 2.5 higher than that employed in Eggels et al. (1994). The time steps used in
this study are presented in table 1. As is clear from table 1 (and from the simula-
tions of turbulent flows in elliptical ducts discussed in the next section, table 2),
the numerical scheme used in this study allows the time steps �t+ = 0.16–0.5.
These computational time steps correspond to reasonable CFL numbers, CFL =
�t max{ux/hx, uy/hy, uz/hz}.

2.2. Circular pipe: mean flow and turbulence statistics properties

Statistically steady-state data for DNS of turbulent flows in a pipe using a cylindrical
coordinate system are usually generated by spatial averaging over the homogenous
streamwise and circumferential directions and by averaging in time. The time-
averaging interval, normally used to reach the time-independent turbulence statistics
by averaging over two homogeneous direction, is Tav = 5–10a/uτ , where a/uτ is the
time scale usually referred to as the ‘turnover time’. For the IB method, which is based
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Figure 1. Contours of (a, c, e) Uz and (b, d, f ) |u′|rms; (a, b)CP1, (c, d)CP2, (e, f )CP3.

on a Cartesian coordinate system, averaging over one homogenous streamwise direc-
tion is insufficient, for which Tav must be considerably increased. In figure 1, we show
the contours of the averaged streamwise velocity Uz normalized by the bulk velocity Ub

and the root-mean-square of the velocity total fluctuations |u′|rms = 〈u′
x
2 + u′

y
2 + u′

z
2〉1/2.
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Figure 2. Radial distribution of (a) Uz and (b) |u′|rms averaged over four radii; —, θ = 0,
π/2, π, 3π/2; – – –, θ = π/4, 3π/4, 5π/4, 7π/4.

For the cases CP2 and CP3, the insufficiency of the time-averaging intervals is
exhibited by the azimuthal asymmetry. As seen from table 1, the time-averaging
interval Tav =570a/uτ , employed for case C1, was larger than that of case CP2 by a
factor of about 20. Thus, it can be inferred that for a relatively short computational
domain Lz/a = 6 (as used for our circular pipe simulations), the time-averaging
interval should be several hundreds of a turn-over time measured in a/uτ units.

In figure 2, the radial distributions of Uz and |u′|rms averaged over two sets of four
radii ({θπ/2} = {0, π/2, π, 3π/2} and {θπ/4} = {π/4, 3π/4, 5π/4, 7π/4}) are shown for
case CP2 which was performed with the smallest time-averaging interval. It should be
especially noted that this additional radius-averaging is effectively equivalent to the
increasing Tav by a factor of 4. The four radii of the {θπ/2}-set are parallel to the co-
ordinate lines, while those of the {θπ/4}-set intersect them at angle π/4. Despite the
lack of axial symmetry (figures 1c, d , CP2) and different orientation of the radii with
respect to the Cartesian coordinate lines, the data in figure 2 show no significant
angular anisotropy. A similar radius-averaging procedure applied to cases CP1 and
CP3 resulted in practically identical distributions along the radii {θπ/4} and {θπ/4}.

In table 1, Cf is the friction coefficient computed from the DNS data,

Cf = 2τw/ρU 2
b , (2.7)

where τw is defined in (2.6) and �(Cf ) is the relative deviation of the calculated Cf

from that of the Blasius’ law, namely

Cf = 0.0791 Re−0.25
m . (2.8)

The present results are in good agreement with Blasius’ law for Rem = 6000, and for
Rem =4000 the agreement is even better.

Figure 3 shows the mean streamwise velocity Uz(d) normalized by the wall shear
velocity as a function of the distance to the wall d . Uz(d) is computed by averaging

〈uz〉 in the θ-direction (θ = tan−1(y/x), d = a −
√

x2 + y2)

Uz(d) =

∫ 2π

0

〈uz〉 dθ. (2.9)

To compute the integral in (2.9), the velocity value 〈uz〉 at given r and θ is
obtained using a bilinear interpolation from the surrounding gridpoints. In figure 3, the
velocity profiles obtained in Nikitin (1994, 1996) for the same Reynolds numbers by a
spectral/finite-difference method in cylindrical coordinates are shown for comparison.
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Figure 3. Streamwise mean velocity logarithmic profile. (a) Rem = 4000; �, CP1; �, CP2; —,
Nikitin (1994, 1996). (b) Rem = 6000; �, CP3; —, Nikitin (1996), �, Eggels et al. (1994).

In figure 3(b), the velocity for a somewhat lower Reynolds number (Rem = 5300) taken
from Eggels et al. (1994) is also shown. Figures 3(a) and 3(b) show a close agreement
between the results obtained by different numerical methods, which confirms the
successful grid-refinement test carried out for Rem = 4000.

For the range of Reynolds numbers considered in this paper, the mean velocity
profile in a circular pipe differs from that in a channel (see Kim et al. 1987; Nikitin
1996; Moser, Kim & Mansour 1999), where U+

z = κ−1 log d+ + B with the universal
constants commonly referred to as κ = 0.4 and B =5.0. However, a discussion of this
issue is beyond the scope of this paper. Here, we are interested only in demonstrating
that the DNS results obtained in the cylindrical and Cartesian coordinates agree
remarkably well.

Our calculations confirm that the mean properties of turbulent flow in a pipe are
in good agreement with those in a square duct as reported by Eggels et al. (1994). In
particular, the values of Uc/Ub (Uc is the centreline velocity) given in table 1 are very
close to those obtained in a square duct (Uc/Ub = 1.33 for Rem = 4410 in Gavrilakis
(1992) and Uc/Ub = 1.32 for Rem = 4000 and 7500 in Nikitin (1997)). In a plane
channel, this ratio is significantly smaller, Uc/Ub = 1.16 and 1.166 for Rem =5600 in
Kim et al. (1987) and Nikitin (1996), respectively.

For Rem = 4000, the r.m.s. of the turbulence intensities in the axial (uz,rms), radial
(ur,rms), and azimuthal (uθ,rms) directions and the Reynolds shear stress 〈u′

zu
′
r〉 are

shown in figures 4(a) to (d). The velocity intensities in cylindrical coordinates are com-
puted from: u′

r = u′
x cos θ + u′

y sin θ , u′
θ = −u′

x sin θ + u′
y cos θ , tan θ = y/x; the results

are averaged in the angular θ-direction. The results agree well with those obtained in
Nikitin (1994, 1996) using cylindrical coordinates. From figure 5, it can be seen that
there is good agreement between the turbulence statistics obtained for Rem = 6000
and those in Eggels et al. (1994) and Nikitin (1996), especially if we take into account
that Eggels et al. (1994) used a smaller Reynolds number for the simulations.

3. Elliptical ducts: DNS results
In this paper, geometrical and computational domain parameters are scaled on

the length of the ellipse’s major semi-axis a. Two elliptical ducts were considered:
b/a = 0.67 (hereinafter referred to as ‘wide’) and b/a = 0.5 (hereinafter referred to as
‘narrow’). The simulations were carried out for ReDh

= 6000, where ReDh
is the

Reynolds number based on the bulk velocity Ub and the hydraulic diameter Dh defined
in (2.6). Simulation parameters are summarized in table 2. The wall unit scales are
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defined by the mean wall shear stress τw , (2.6). The cross-stream grid refinement tests
were performed in order to exclude possible non-physical contamination of the results
owing to the employed numerical method. The finest computational mesh includes
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Case EP1 EP2 EP3 EP4 EP5

b/a 0.67 0.67 0.5 0.5 0.5
Dh/a 1.59 1.59 1.30 1.30 1.30
Re2a 7547 7547 9252 9252 9252
ReDh

6000 6000 6000 6000 6000
Nx × Ny 140 × 100 200 × 160 140 × 100 160 × 120 200 × 160

Nz 256 256 256 256 256
a+ 258 256 314 313 312
b+ 173 171 157 157 156

Lz/Dh 6.0 6.0 6.0 6.0 6.0
L+

z 2472 2453 2450 2443 2431

h+
x,min 1.9 1.3 2.3 2.0 1.6

h+
x,max 5.4 3.7 6.5 5.7 4.5

h+
y,min 1.8 1.1 1.6 1.3 1.0

h+
y,max 5.1 3.1 4.6 3.8 2.8

h+
z 9.7 9.6 9.6 9.5 9.5

�+
max 6.4 4.8 6.6 5.9 4.9

�t+ 0.22 0.37 0.32 0.32 0.16

CFL 0.43 0.69 0.63 0.63 0.32

Tavuτ /a 110 60 100 50 60

Table 2. Elliptical duct runs parameters.
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Figure 6. Contours of (a) Uz, and (b) |u′|rms, without quadrant averaging (case EP1).

8.192 × 106 grid points, 4.84 × 106 of them inside an elliptical duct for cases EP2 and
EP5. The size of the smallest computational cell is about one viscous length unit in
the domain cross-section and less than 10 viscous lengths in the streamwise direction.
The mean grid width is defined as �+ = (h+

x h+
y h+

z )1/3. From table 2, �+ � 5.0, which
means that the constraint �+ � πη+ (see Eggels et al. 1994) is satisfied for cases EP2
and EP5. Here, η+ ≈ 1.6 is the Kolmogorov length scale.

The length of the computational domain Lz/Dh =6 is larger than that in the
circular pipe by a factor of 2. Therefore, averaging in time and in the axial direction
can be considered adequate, in particular for the simulations with Tavuτ/a � 100. This
is because distributions of mean flow properties become symmetric with respect to the
ellipse’s principal axes. In figure 6, we show the contours of the averaged axial velocity
Uz and the r.m.s. of the velocity total fluctuations |u′|rms (case EP1). It can be seen
that the contours are practically symmetrical with respect to the ellipse’s axes. Besides
the streamwise direction averaging, the reliability of the time-averaged statistics was
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Run EP1 EP2 EP3 EP4 EP5

Cf 0.00932 0.00917 0.00922 0.00917 0.00908
�(Cf ) 3.6 % 2.1 % 2.6 % 2.1 % 1.0 %
Uc/Ub 1.29 1.29 1.27 1.27 1.28
U+

c 18.84 19.00 18.72 18.82 18.96

max
√

U 2
x + U 2

y /Ub 0.0101 0.0104 0.0139 0.0137 0.0135

max|u′|rms/Ub 0.198 0.195 0.198 0.197 0.197

Table 3. Elliptical duct runs: global characteristics.

increased by additional quadrant averaging over four points located symmetrically
to the ellipse’s axes. In this paper, all time-averaged statistics are obtained by using
averaging over the four quadrants.

Mean flow properties are summarized in table 3. Cf is the friction coefficient
computed from the DNS data and �(Cf ) is its relative deviation from the correlation
based on Blasius’ law when it is applied to non-circular ducts by using the hydraulic
diameter

Cf = 0.0791Re−0.25
Dh

, ReDh
= UmDh/ν. (3.1)

Comparison of the results shows only minor differences between the friction coeffi-
cients Cf obtained for different computational meshes, which indicates that the grid
refinement test we performed was successful. In general, our computations confirm
the validity of the Blasius’ law (3.1) for low-Reynolds numbers considered in this
paper. The difference between Cf computed from (3.1) for ReDh

= 6000 and that
obtained from the Prandtl correlation

1/
√
λ = 2 log10(ReDh

√
λ) − 0.8, Cf = λ/4, (3.2)

is only 1.2 %.
To calculate the Reynolds number for non-circular ducts, Jones (1976) suggested

using a hydraulic diameter D′
h, instead of that defined in (2.6), as follows

D′
h = Dh

16

ReDh
Cflam

, (3.3)

where Cflam is the friction coefficient for a fully developed laminar flow in the duct
defined in (2.7). For a laminar flow through an elliptical pipe

uz(x, y) =
�p

2µLz

a2b2

a2 + b2

(
1 − x2

a2
− y2

b2

)
, (3.4)

where µ is a dynamic viscosity. Calculating the bulk velocity Ub from (3.4), for
Reynolds number Re ′

Dh
, we have

Re ′
Dh

= ReDh

8a2b2

D2
h(a

2 + b2)
. (3.5)

In our calculations, Re ′
Dh

=5844 and 5680 for b/a = 0.67 and 0.5, respectively. Using

Re ′
Dh

instead of ReDh
in (3.1) and (3.2) improves the agreement with the friction

coefficient obtained by DNS by 0.7 % and 1.4 % for wide and narrow elliptical pipes,
respectively.

The global characteristics obtained on different meshes were found to be quite
similar. Moreover, the cross-stream section distributions for different meshes were,
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Figure 7. Contours of Uz; (a)EP2, (b)EP5.
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for the most part, very close quantitatively and qualitatively. For example, the
distributions of the axial mean velocity and the turbulence intensities along the
major axes were found to be almost identical. This not only confirms the correctness
of the results, but is promising evidence that the IB method formulated on Cartesian
coordinates can be applied for DNS of the problem at hand. The results presented
below were obtained on the finest grids, cases EP2 and EP5 in table 2.

Figure 7 shows the mean streamwise velocity Uz contours for wide and narrow
pipes. The corresponding values of Uc/Ub are 1.29 and 1.27. For a laminar profile,
(3.4), the velocity contours are a family of ellipses and Uc/Ub = 2 for all b/a.

The circumferential variation of the wall shear stress along the wall

τw = µ
∂Uz

∂n

∣∣∣∣
wall

, (3.6)

normalized by the mean wall shear stress τw , is shown in figure 8 for the first quadrant
0 � θ � π/2. A certain waviness in the profiles may be attributed to insufficient time
averaging or to inaccuracies caused by the velocity interpolation procedure used in
the immersed-boundary method. For comparison, the laminar distribution of τw/τw

τw

τw

=
4ab

Dh(a2 + b2)

(
a4 sin4 θ + b4 cos4 θ

a2 sin2 θ + b2 cos2 θ

)1/2

, (3.7)

is also presented in figure 8. The circumferential variation of τw/τw for turbulent
flow is more moderate than that for laminar flow. The ranges are 0.93–1.04 and
0.85–1.07 for wide and narrow elliptical pipes, respectively; for the laminar flow the
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corresponding ranges are 0.78–1.16 and 0.62–1.23. Similar to laminar flows, the local
wall shear stress in turbulent flows is minimal at the points far from the pipe’s centre
(x = ±a, y = 0). The difference between the wall stress τw computed at the minor and
major axes endpoints is caused by the wall curvature. For a laminar flow, from (3.7),
τw(θ = 0)/τw(θ = π/2) = b/a.

The cross-stream mean secondary flow, which develops in non-circular ducts, affects
the cross-sectional distribution of the mean streamwise velocity. The cross-flow stream-
lines of a secondary flow coincide with the contours of the stream function ψ(x, y)
defined by Ux = ∂ψ/∂y, Uy = −∂ψ/∂x (Ux and Uy are the cross-stream components of
the mean velocity vector). Figure 9 shows the streamlines of the secondary flows which
appear as two pairs of counter-rotating vortices. (Figure 9 shows a secondary flow in
the first quadrant. A similar distribution is seen in the remaining three quadrants.)
The secondary vortices transfer low-momentum fluid toward the pipe centre along
the minor principal axis of the ellipse. Vice versa, the high-momentum fluid moves
towards the wall along the major axis.

The cross-sectional distributions of the secondary-flow velocity Uxy =
√

U 2
x + U 2

y are

shown in figure 10. The maximal values of secondary-flow velocity ≈ 0.010Ub and
0.014Ub were measured for wide and narrow elliptical pipes, respectively. In our com-
putations, the secondary velocity reaches a maximum value in the vortex periphery,
near the wall at d+ ≈ 15. For a square duct, Gavrilakis (1992) reported a maximum
secondary velocity of 0.019Ub found at d+ = 10.65. In the core, the secondary-flow
velocity is less. The maximum velocity of the secondary flow along the minor axis Uy
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towards the centre is about 0.0045Ub for a wide pipe and 0.0035Ub for a narrow pipe.
The corresponding values for the secondary flow towards the wall along the major
axis Ux are 0.0072Ub and 0.0105Ub.

Figures 11–13 show the near-wall profiles of the velocities Uz, Un and Ut as a
function of the distance to the wall d+, where Un and Ut are the cross-stream velocity
components normal and tangential to the wall, respectively. The location of a (xw, yw)-
point at the wall is defined by the angle θ = tan−1(yw/xw).

Figure 11(a) shows that the streamwise velocity Uz profile, normalized by the
mean shear velocity, is nearly azimuthal symmetric. For a narrow elliptical pipe,
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figure 11(b) shows that the velocity distributions along the principal axes are different,
but the profiles along the radii with θ = π/4 and 3π/8 and that along the minor axis
practically coincide. This suggests that the mean streamwise velocity is universal
for π/4 � θ � π/2, where the wall curvature is much less than for 0 � θ � π/8. To
verify this, in figure 14 the logarithmic plots of the streamwise velocity Uz scaled
with the mean shear velocity are shown along the minor and major axes. For a
wide elliptical pipe (figure 14a), both profiles practically coincide over the interval
20 <d+ < 100, indicating very pronounced logarithmic profile. For a narrow pipe, the
profiles in figure 14(b) show logarithmic regions with different slopes. In addition,
the velocity distribution along the major axis exhibits a linear profile U+

z = d+ over
0 � d+ � 10, which is wider than that observed in turbulent pipes and channels. This
suggests that possible flow laminarization took place in the vicinity of the major axis
endpoints, a point which deserves further comment. Figure 15 shows the Reynolds
shear stress 〈u′

nu
′
z〉 distributions scaled with the mean shear velocity uτ and the

correlation coefficient 〈u′
nu

′
z〉/(un,rmsuz,rms). The subscript n stands for the outward-

pointing direction normal to the wall. Therefore, 〈u′
nu

′
z〉 ≡ 〈u′

xu
′
z〉 and 〈u′

yu
′
z〉 for θ = 0

and π/2, respectively. According to figure 15, it can be seen that there is good
agreement between the Reynolds shear stress profiles for θ = π/4, 3π/8 and π/2 with
those in a circular pipe (figure 5). This means that in the region π/4 <θ < π/2, the
Reynolds stresses are not affected by the wall curvature and therefore the mean wall
shear τw is a correct scale. On the other hand, the Reynolds shear stress distributions
for θ = 0 and π/16 show strong azimuthal dependency and are considerably less than
those calculated in the minor axis vicinity. The argument that this discrepancy is due
to unsuitable scaling by τw is not supported by the wall shear stress distribution shown
in figure 8. Indeed, figure 8 indicates that scaling by the local wall shear stress increases
〈u′

xu
′
z〉 by a factor of 1.08 and 1.18 for wide and narrow elliptical pipes, respectively.

Figure 14 presents the streamwise velocity along the major axis normalized by the
local shear velocity. Hence, the significant deviation from the universal profile does
not support the choice of a local shear velocity as a characteristic velocity.

Figures 16–18 show the turbulent intensities normalized by the wall shear velocity.
The plots clearly show the suppression of turbulence along the major axis. For
a circular pipe, Eggels et al. (1994), discussed the transverse curvature effect as a
possible mechanism of turbulence suppression, when the sweep events of carrying
high-speed fluid towards the wall followed by the energy transfer to the longitudinal
and circumferential components, are inhibited owing to the transverse curvature.
For an elliptical pipe, the transverse curvature effect is more significant, leading to
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Figure 19. Uz-velocity contours. (a) ‘only-secondary flow’, (b) ‘no-secondary flow’.

considerable reduction of turbulence intensities along a major axis. The distribution of
the correlation coefficient 〈u′

nu
′
z〉/(un,rmsuz,rms) along minor and major axes, presented

in figures 15(c) and (d), exhibits considerable differences for d+ > 20.
Notwithstanding that the Reynolds shear stresses 〈u′

xu
′
z〉 measured along the major

axis (figure 15) are considerably lower than those observed in pipe and channel
turbulent flow, the streamwise velocity profile is in good agreement with the velocity
universal logarithmic law (figure 14). To try to understand that, we write the equation
for the mean streamwise velocity

︷ ︸︸ ︷
Ux

∂Uz

∂x
+

∂〈u′
xu

′
z〉

∂x
+

︷ ︸︸ ︷
Uy

∂Uz

∂y
+

∂〈u′
yu

′
z〉

∂y
=

�p

ρLz

+ ν

(
∂2Uz

∂x2
+

∂2Uz

∂y2

)
. (3.8)

This is the standard Reynolds-averaged Navier–Stokes equation for the streamwise
force–momentum balance, where the first and third terms describe the contribution
of the cross-stream secondary flow. Each of the four terms of the left-hand side of
(3.8) represents a different mechanism of the streamwise momentum fluxes. The cross-
stream turbulent and secondary flow momentum transport result in redistribution of
the streamwise velocity. To observe the influence of each of these mechanisms, we
performed the following numerical experiment. For the given Ux, Uy, 〈u′

xu
′
z〉, 〈u′

yu
′
z〉

fields, Uz-velocity field was obtained from (3.8) with only the secondary flow transport
(i.e. the second and the fourth terms are omitted) or, vice versa, only with the
turbulent transport (i.e. the first and the third terms are omitted). In both simulations,
the pressure drop �p in (3.8) corresponds to the turbulent flow with ReDh

= 6000.
Figure 19 shows the results of this numerical experiment for a narrow pipe, where
the streamwise velocity field normalized by the centreline velocity is shown.
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Figure 20. Balance of terms in Uz-equation (3.8) along the axes; (a) major axis, Uy = 0, —,
Ux∂Uz/∂x, (b) minor axis, Ux = 0, —, Uy∂Uz/∂y; (a, b): - - -, ∂〈u′

xu
′
z〉/∂x; – · –, ∂〈u′

yu
′
z〉/∂y; �,

all terms.

From figure 19, we can see that these mechanisms play, apparently, opposite roles.
In both cases, the resulting velocity field differs considerably from the actual velocity
distribution presented in figure 7(b). From figures 7(b) and 19(b), the ‘no-secondary
flow’ field almost does not affect the isovels’ patterns in the near-wall region for
π/4 � θ � π/2, but changes the flow along the major axis, transferring the low-
momentum fluid towards the centre. On the contrary, according to figures 7(b) and
19(a), the ‘only-secondary flow’ significantly changes the isovels’ pattern transferring
the high-momentum fluid towards the wall along the major axis and the low-speed
fluid towards the centre along the minor axis.

For comparison, figure 20 shows the terms of (3.8) in the near-wall region for a nar-
row pipe. The momentum transport along the major axis is described by the first two
terms in (3.8), where the first term represents the convection of the mean streamwise
high-momentum fluid towards the wall. From figure 20(a), the first two terms in (3.8)
are of the same order of magnitude, which indicates that the secondary flow along
the major axis contributes significantly to the total balance. When we compare the
turbulent fluxes of momentum, ∂〈u′

xu
′
z〉/∂x in figure 20(a) to ∂〈u′

yu
′
z〉/∂y in figure 20(b),

we can see that the reduced turbulent flux along the major axis is compensated by
the induced secondary flow. This might explain why the velocity profile along the
major axis replicates the universal logarithmic profile. The third and the fourth terms
in (3.8) represent the momentum transport along the minor axis towards the centre.
According to figure 20(b), the low-momentum fluid transport along the minor axis by
the secondary flow is negligibly small. In the near-wall region 0 � d+ � 10, the total
contribution of the momentum transport along the major axis came out to be much
less than that along the minor axis. This reduction results in the linear profile U+

z = d+.
The contours of the r.m.s. values of the fluctuating streamwise and cross-sectional

velocities, are shown in figures 21 and 22, respectively. Figure 22 clearly demonstrates
the azimuthal dependency of the turbulence cross-sectional intensity magnitude. The
maximum values are reached relatively close to the minor axis, namely, at x = 0.2 and
at x = 0.15 for wide and narrow elliptical pipes, respectively, at a distance from the
wall of d+ ≈ 40.

In the near-wall region, the turbulent shear flow is essentially anisotropic. Following
Lee, Kim & Moin (1990), we computed the steamwise energy-partition parameter as

K∗ =
2u2

z,rms

u2
x,rms + u2

y,rms

. (3.9)
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Figure 21. Contours of uz,rms/uτ ; (a)EP2, (b)EP5.
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Figure 22. Contours of uxy,rms/uτ , uxy,rms = 〈u′
x
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y
2〉1/2; (a)EP2, (b)EP5.
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Figure 23. Contours of the energy-partition parameter K∗; (a)EP2, (b)EP5.

In isotropic turbulence K∗ = 1. In the near-wall regions, a strong shear leads to a
much higher value of K∗. Figures 23 and 24 show contours and variations of the
energy-partition parameter K∗ along the axes. Kim et al. (1987) found that for a
turbulent channel flow K∗

max ≈ 15 at d+ ≈ 8. For a circular pipe, our results obtained
in case CP3 are shown in figure 24 for comparison. Following the notation used in
this paper, the axes of the major and minor ellipses correspond to θ =0 and θ = π/2,
respectively. Profiles of K∗ as a function of the distance to the wall d+ for 0< θ < π/2
lie between two (squares and circles) curves and are not shown in figure 24. From
figure 24(a), it can be observed that the azimuthal dependency of K∗ is relatively weak
for a wide pipe. For a narrow pipe, the energy-partition parameter in the near-wall
region of 0 <d+ < 7 is independent of the circumferential location.

The elongated ‘streaks’ of alternating low- and high-speed fluid generated near the
wall are a noteworthy feature of wall-bounded flows. It is commonly held that the
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Figure 24. Profiles of the energy-partition parameter K∗ along �, the minor and �,
major axes; —, circular pipe, case CP3; (a)EP2, (b)EP5.
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Figure 25. Streaks, d+ = 10, EP5.

near-wall streaks have a crucial role in turbulence production. The mean spacing
between the streaks in the near-wall region is usually obtained from the two-point
autocorrelation function of the streamwise velocity with separations in the spanwise
(in our case, azimuthal) direction, Qu′

zu
′
z
(�s). It is well-accepted that the half mean

streak spacing is the separation �s where the minimum (negative) value of Qu′
zu

′
z

is
reached. The spanwise spacing between the streaks for a channel flow is λ+ � 80–120
in wall units for moderate Reynolds number flows.

Contours of the streamwise velocity component at the circumferential surface
distanced at d+ = 10 and 50 to the wall are plotted in figures 25 and 26, respectively.
Dark and light colours mark high- and low-speed streaks corresponding to u′

z > 0
and u′

z < 0, respectively. For d+ =50, the streaks are hardly noticeable (figure 26). In
the vicinity of the major axis endpoints (marked by θ = 0, π, 2π), the streaks are less
pronounced, which is indicative of turbulence attenuation by the transverse curvature
effect (figure 25). Figure 27 shows the two-point spanwise (azimuthal) autocorrelation
function Qu′

zu
′
z
(�s) for different d+. As can be observed, estimating the mean streak

spacing yields λ+ � 100. The plots presented in figures 24 and 27 are in accordance
with the criteria (K∗ > 5) for the existence of the near-wall streaks for 2 � d+ � 30–35
suggested by Lee et al. (1990).
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Figure 26. Streaks, d+ = 50, EP5.
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4. Summary
Fully developed turbulent flows in non-circular ducts seem relatively simple as

they are unidirectional, but they are actually complicated because secondary mean
motions develop in the cross-stream plane. These motions are driven by generated
mean streamwise vorticity due to the anisotropy of the cross-stream Reynolds stresses.
They are an intrinsic feature of turbulent flow in non-circular ducts and play a
significant role by cross-stream transferring momentum, heat and mass. An accurate
prediction of secondary flows is still difficult for existing turbulent closure models
owing to the lack of comprehensive experimental data. Reported DNS-based data on
secondary flows have been restricted to the case of a duct with a square cross-section.
The aim of the present work was to provide new DNS-based data of turbulent flows
in non-circular ducts. We used the immersed-boundary method for Navier–Stokes
simulation in complex boundaries. This allows us to simulate flows in ducts with,
generally speaking, arbitrary cross-sections by using an efficient and stable calculation
procedure derived for simple rectangular meshes. Our results support the recent trend
to employ immersed-boundary methods formulated on rectangular meshes as a tool
for simulating turbulent flows.

We considered ducts with an elliptic cross-section. Although an elliptical duct is
simply a modification of the classic circular pipe, it incorporates the main features of
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flows in non-circular ducts. To validate the numerical procedure, DNS of turbulent
flows through a circular pipe has been carried out. The results showed good agreement
with experimental findings and numerical results reported in the literature. Two
elliptical ducts were considered with b/a = 0.67 and b/a =0.5 (a and b are the ellipse’s
principal radii). The Reynolds number was set to ReDh

= 6000, based on hydraulic
diameter Dh and bulk flow velocity. For both ducts, different meshes were used to ex-
clude possible numerical errors arising from the non-standard computational method
employed. The computed friction coefficient was found to be in good agreement
with Blasius’ law Cf = 0.0791Re−0.25

Dh
, which supports the validity of the hydraulic

diameter concept. The mean streamwise velocity profiles and the turbulence statistics
were in good agreement with the known near-wall turbulent characteristics. Cross-
stream secondary motions are exhibited by two pairs of vortices which transfer low-
momentum fluid towards the duct centre along the minor axis. Vice versa, the high-
momentum fluid moves toward the wall along the major axis. The maximum intensity
of the secondary flows was found to be 1 % and 1.4 % of bulk velocity for wide
and narrow ducts, respectively. Despite this small value, secondary flows play a role
comparable with Reynolds stresses for developing the mean velocity profile.

The mean flow characteristics, the Reynolds stresses and turbulence intensities
along the minor axis of the elliptical cross-section were found to be similar to plane
channel data. The turbulent statistics computed along the major axis is inhibited by
the secondary flow transferring high-momentum fluid from the duct’s centre towards
the wall.

The near-wall distributions of turbulence intensities were studied in detail and
showed the significant reduction of turbulent activity in the near-wall region of the
major axis endpoints. Moreover, the instantaneous velocity fields in the near-wall
region revealed structures similar to the ‘streaks’, except in the vicinity of the major
axis endpoints. This can be attributed to sweep events of carrying high-speed fluid
towards the wall, which are inhibited by the wall transverse curvature effect.
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